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C Haro-Pérez1, M Quesada-Pérez2 , J Callejas-Fernández1 ,
P Schurtenberger3 and R Hidalgo-Álvarez1,4
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2 Departmento de Fı́sica, Escuela Politécnica Superior de Linares, University of Jaén,
23700 Linares, Spain
3 Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland

E-mail: rhidalgo@ugr.es

Received 12 May 2006
Published 28 June 2006
Online at stacks.iop.org/JPhysCM/18/L363

Abstract
The static structure factor S(q) is measured for a set of deionized latex
dispersions with different numbers of ionizable surface groups per particle and
similar diameters. For a given volume fraction, the height of the main peak of
S(q), which is a direct measure of the spatial ordering of latex particles, does
not increase monotonically with the number of ionizable groups. This behaviour
cannot be described using the classical renormalization scheme based on the cell
model. We analyse our experimental data using a renormalization model based
on the jellium approximation, which predicts the weakening of the spatial order
for moderate and large particle charges.

A long-standing issue in colloid science is the precise understanding of the electrostatic forces
in charge-stabilized dispersions. According to the widely known Derjaguin–Landau–Verwey–
Overbeek (DLVO) theory, the interaction potential u(r) of charged spherical colloidal particles
is

u(r) = (Ze)2

4πε0εr

exp(2κa)

(1 + κa)2

exp(−κr)

r
. (1)

Here, Z is the number of charges per colloidal particle, e is the elementary charge, κ is the
Debye–Hückel screening parameter, ε0εr is the dielectric permittivity of the solvent and a is
the colloidal particle radius. This expression was derived assuming small surface charges.
However, a large number of theoretical works state that equation (1) could be valid if Z and κ

are considered as renormalized parameters rather than the actual ones (see [1–3] and references
cited therein). Some theories have been devised for predicting renormalized parameters in a

4 Author to whom any correspondence should be addressed.

0953-8984/06/280363+07$30.00 © 2006 IOP Publishing Ltd Printed in the UK L363

http://dx.doi.org/10.1088/0953-8984/18/28/L01
mailto:rhidalgo@ugr.es
http://stacks.iop.org/JPhysCM/18/L363


L364 Letter to the Editor

Table 1. Latexes used in this work.

Diameter Surface charge density Number of ionizable
Latex (nm) (µC cm−2) groups per particle

L1 82 0.63 425
L2 80 1.51 2100
L3 80 2.97 4210
L4 80 7.86 11140

numerical way. In the middle 1980s Alexander et al proposed the cell model [4], which has
been widely used since then. Accordingly, the dimensionless solution (�) to the Poisson–
Boltzmann (PB) equation is asymptotically approximated at the boundary of the so-called
Wigner–Seitz (WS) cell by the solution of the linearized PB equation (�0), where the size
of the WS cell is determined by the particle concentration. At small distances from the surface,
�0 underestimates the magnitude and the slope of � . This underestimation is interpreted in
terms of charge renormalization [4].

At the same time, Beresford-Smith and co-workers [5] developed a renormalization
scheme based on the so-called jellium approximation. The theory proposed by these authors
is also based on the approximation of � by �0 but at large distances in this case. Also in
contrast with the cell model, the dispersion is supposed to be completely disordered. In other
words, this theory assumes that there are no correlations between the particles, i.e. the colloid–
colloid radial distribution function is g(r) = 1. Although this approach was proposed two
decades ago, only recently have a few works emphasized its more peculiar and characteristic
predictions. Rojas and co-workers find in their experiments that the amplitude of the first
peak of the structure factor does not increase monotonically with the volume fraction (ϕ) but
shows a minimum [6], which had already been predicted by Beresford-Smith [5]. Another of its
predictions is the behaviour of the structure with particle charge; they reported that the first peak
of the structure factor should exhibit a maximum with increasing particle charge. Trizac and
Levin propose a renormalized jellium model and argue as to why the effective charge obtained
from it is more relevant for studying colloidal interactions [7].

We should also point out that, in a recently published work, fairly good agreement between
the above mentioned prediction of Beresford-Smith’s approach (non-monotonic behaviour with
the surface charge) and experimental results was found for a set of liposome vesicles with
different numbers of ionizable groups [8]. However, only moderately structured samples were
observed for such systems and the probable failure of the theoretical model in the case of highly
structured dispersions was claimed.

The aim of this work is to look into the non-monotonic behaviour of the spatial ordering
with the surface charge in a set of model colloids and find out to what extent Beresford-Smith’s
approach can explain the observed structure factors in highly ordered systems. In order to
characterize the evolution of static properties with the particle charge, we have studied several
colloidal dispersions with similar particle size but different charges. The remainder of the work
is organized as follows. First, the experimental systems and methods are described in some
detail. Then, the experimental results are presented and compared to the theoretical predictions.

In our experiments, four latexes supplied by Ikerlat Polymers were used. Their sizes and
numbers of ionizable sulfate groups (determined by means of transmission electron microscopy
and titration, respectively) are shown in table 1. As can be seen, all these latexes have
practically the same diameter. Their spherical form and monodispersity were also confirmed
by fitting the corresponding form factors with the expression provided by the Rayleigh–Gans–
Debye theory for spheres of identical size.
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Figure 1. Experimental structure factors for latex systems at a volume fraction around 0.15%.

The dependence on q of the average scattered intensity was measured with a 3D-DLS
system (LS Instruments) for angles from 15◦ to 135◦. The 3D cross-correlation scheme allows
correcting the effect of multiple scattering on the scattered light intensity and can be used to
successfully characterize turbid suspensions with transmission values, of the singly scattered
light, as low as 0.01 [9, 10]. The light source was a diode laser working at 680.4 nm and the
device is provided with a multitau correlator (Flex). A complete description of the technique
has been given elsewhere [9]. The different samples were prepared at 0.15% in volume fraction
by dilution of stock solutions and kept for at least 20 days in a mixed bed of ion exchanger resin
in sealed cylindrical quartz cuvettes. During this period, the scattered intensity was monitored
and when no significant changes were observed, the deionization process was supposed to be
completed. In figure 1, the structure factors observed for the four latexes are shown. First, the
appearance of a re-entrant fluid–crystal–fluid phase upon increase of the number of charged
groups per particle should be pointed out. Sample L2 shows crystallization. Nevertheless, in
this work we focus on the metastable state of the samples. Due to the low particle number
density of the system, of order 6 × 1013 cm−3, the metastable state is obtained by tumbling the
sample before each measurement [11]. Another striking feature of the measured S(q) is the
upturn at low values of q for samples L2 and L3. In our case, the multiple scattering effects can
be safely ruled out since the singly scattered light represents more than 90% of the measured
intensity. Furthermore, even if the particle concentration in all the samples is very similar, the
uprising only appears in these two samples. Rojas et al have observed a similar upturn in the
static structure factor for latex samples at similar and higher concentrations, a feature that is
also reflected in the dynamics [12].

Structure factors in figure 1 show that spatial correlation first increases with the number
of ionizable groups (N) and then seems to decrease. This non-monotonic behaviour can also
be graphically illustrated by plotting the height of the first peak of S(q), Smax, as a function
of N (see figure 2). Smax clearly exhibits a maximum versus N (as predicted by Beresford-
Smith et al; see figure 8 in [5]). However, it should be stressed that the value of Smax for the
sample corresponding to this maximum (L2) is extremely large. In fact, this sample crystallizes
after tumbling if we wait enough time, as mentioned above. According to the Verlet’s rule, the
crystallization takes place for Smax > 2.8 and this system is just over this threshold. In addition,
we should mention that the crystallization of latex L2 was also observed (with the naked eye)
for other particle concentrations.
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Figure 2. Height of the main peak of the structure factor, Smax, as a function of the number of
ionizable groups per particle. Squares denote the experimental results whereas solid, dotted and
dashed lines indicate the predictions obtained from the jellium approximation, the cell model and
the self-consistent modified jellium model (see equation (5)) respectively.

(This figure is in colour only in the electronic version)

As first attempt to explain our results we have applied the jellium renormalization scheme
to our colloidal systems. In order to do that, the normalized electrostatic potential � must
be calculated from the Poisson–Boltzmann (PB) equation assuming that: (i) colloidal particles
are treated on the same footing as small ions; (ii) the spatial ordering is completely neglected,
i.e. g(r) = 1. Under these assumptions and for spherical particles, the PB equation then reads

� ′′(r) + 2

r
� ′(r) = −4πlB

[
(ZnP + nS) exp(−�) − nS exp(�) − ZnP

]
(r � a) (2)

where lB is the so-called Bjerrum length (0.713 nm for water at 25 ◦C), and nP and nS are the
concentrations of colloidal particles and monovalent salt, respectively. Equation (2) is solved
together with the boundary conditions � ′(a) = ZlB/a2, which is Gauss’s law applied to the
particle surface, and �(∞) = 0. The far-field solution of equation (2) can be matched by the
linearized solution

�0(r) = lB
Z ren exp(κrena)

1 + κrena

exp(−κrenr)

r
(3)

where Z ren and κren are the renormalized parameters. In the application of this procedure one
could be tempted to identify the particle charge (Z ) with the total number of ionizable groups
(N). This assumption seems reasonable since we are dealing with strong acid groups (sulfate).
However, in highly deionized suspensions the proton concentration close to the particle surface
could be so extremely large that the local pH would even be comparable to the pKsulfate, as other
authors pointed out [13]. Consequently, the actual number of dissociated surface groups (Z )
would be considerably smaller than the total one (N), which can be estimated implementing
a mass equation in our calculations. Accordingly, the mass equation for the dissociation of
the surface sulfate groups would be Ksulfate = [H+]0 Z/(N − Z), where [H+]0 is the proton
concentration at the particle surface. As this quantity depends on the surface electrostatic
potential, this condition must be consistently applied together with the boundary condition
derived from Gauss’s law. Following some studies [13–15] Ksulfate ≈ 2 was assumed. It
should also be mentioned that, although our experiments are carried out with highly deionized
samples, we have assumed a residual ion concentration of 10−6 M, following the estimations
done by Evers et al [16]. In table 2, the results for Z calculated from this procedure are
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Table 2. Values obtained for Z (actual charge), Zren (renormalized charge) and κrena from the
jellium approximation and cell model.

Z (in elementary Zren (in elementary
charges per particle) charges per particle) κrena

Latex Jellium Cell model Jellium Cell model Jellium Cell model

L1 407 411 285 352 0.224 0.240
L2 1153 1020 342 468 0.331 0.250
L3 1672 1326 345 482 0.389 0.251
L4 2780 1833 359 493 0.498 0.253

shown. The values for κ are also included. It should be noted that κ is not renormalized
in the jellium approach, in contrast to the cell model, and it depends on the bare charge Z ,
κ = √

4πlB(2nS + ZnP). This is the key point for understanding our results. After having
calculated the parameters characterizing the interaction, Z ren and κren, which are displayed
in table 2, the structure factor and, more specifically, Smax can be computed. In our study,
we applied the hypernetted chain (HNC) approximation where the input parameters are the
renormalized charge Z ren (obtained from the dissociated charge, Z ), κren and the volume
fraction. In figure 2 the resulting Smax for a suspension of particles with a = 40 nm and
ϕ = 0.0015 is plotted to be compared with the experimental data. As can be seen, the
prediction of the jellium approximation does not reproduce the experimental results. A non-
monotonic behaviour with N is obtained but a quantitative description is not possible. On the
one hand, it significantly underestimates the values of Smax. Other authors have also reported
such underestimation of the dependence of the spatial ordering on the volume fraction (or
particle concentration) [6, 17]. In other words, this theory overestimates the screening effect of
the particles and/or underestimates the particle–particle spatial ordering. This is not surprising
since the particle–particle structure has been completely neglected in this model, g(r) = 1.
On the other hand, certain disagreement between theory and experiment on the position of the
maximum is also found.

At this point, we will also probe to what extent the classical Alexander cell model can
capture the main features of the Smax–N plot. According to this model, � is computed solving
the PB equation in a cell of radius R (depending on the volume fraction):

� ′′(r) + 2

r
� ′(r) = −4πlB

[
(ZnP + nS) exp(−�) − nS exp(�)

]
(a � r � R). (4)

In this case, the presence of the other colloidal particles is considered, introducing the cell
of finite volume. Again one assumes at r = a that � ′(a) = ZlB/a2, whereas the electric
field vanishes at the cell boundary (i.e., � ′(R) = 0), which guarantees electroneutrality. The
renormalized parameters were calculated again approximating asymptotically the numerical
solution of equation (4) at the WS cell boundary with a linearized solution of the PB equation.
The dissociation of sulfate groups was taken into account as well. At any rate, it should
be mentioned that Trizac et al have revisited the renormalization prescription of Alexander,
suggesting an efficient way to apply such a scheme in practice [18]. Moreover, these authors
have shed light on the definition and calculation of κ , which sometimes seems to be confused.

The results for the dissociated charge Z and the renormalized charge Z ren obtained
with the cell model are also shown in table 2. It should be emphasized that the Debye
screening parameter is also renormalized, κren, which did not occur in the case of the jellium
approximation. Furthermore, κren seems to saturate with increasing Z . The predictions obtained
for Smax (with a = 40 nm and ϕ = 0.0015) are also plotted in figure 2. As expected, this



L368 Letter to the Editor

quantity increases monotonically with increasing particle charge and, consequently, this model
also fails to fully describe our data. From a quantitative viewpoint, these predictions seem to
be somewhat successful, with the clear exception of the crystallizing sample ones.

Certainly, figure 2 suggests that the jellium approximation overestimates the screening of
the macroions (whose actual charge is Z ), so we intended to apply a modified jellium model
improving this picture and inspired by an idea put forward by Trizac and Levin [7]. According
to these authors, one should suppose that colloidal particles screen with their renormalized (or
effective) charge instead of the actual one. Consequently, equation (2) could be rewritten as

� ′′(r) + 2

r
� ′(r) = −4πlB

[
(Z rennP + nS) exp(−�) − nS exp(�) − Z rennP

]
(r � a)

(5)

and κ = √
4πlB(2nS + Z rennP). Obviously, the problem then is that Z ren is unknown a

priori. In fact, we must solve equation (5) (and then apply equation (3)) to determine the
renormalized charge. In other words, this parameter is calculated self-consistently (together
with the corresponding boundary conditions and the mass equation for the dissociation of the
surface sulfate groups). First, a trial value for Z ren is chosen (as input). After solving the
previous differential equation, this guess is compared with the output value. This procedure
is repeated until both coincide. The results are also plotted in figure 2. As can be seen,
the behaviour is quite similar to that reported for the cell model, although the quantitative
agreement with experimental data is better. In any case, this self-consistent jellium model
cannot explain the crystallization of sample L2 either.

Other authors have also investigated the influence of the particle charge on the solid–liquid
phase transition for silica and polymer latex dispersions [19], although for a narrow range
of surface charge densities (<1 µC cm−2). They also reported a re-entrant transition with
increasing surface charge density and claimed that such behaviour is not explicable in terms
of a purely repulsive Yukawa potential complemented with a charge renormalization scheme.
This study seems to support this conclusion from an analysis in which we have explicitly
considered: (i) the measure of the structure factor for characterizing the spatial ordering;
(ii) two models for predicting renormalized interaction parameters. The theory proposed by
Beresford-Smith et al is able to predict the weakening of the spatial correlation with increasing
particle charge but the jellium approximation is inadequate for highly structured samples. As
regards the cell model, this scheme cannot predict the crystallization of one of the samples.
In our opinion, the existence of an attractive contribution to the interaction potential is still a
controversial issue. For instance, Roij et al have shown that the observation of a fluid–fluid
phase separation in a charge-stabilized colloidal dispersion does not necessarily imply such
attractive component in the effective pair interaction between highly charged particles [20]. On
the other hand, some of the same authors have considered three-body forces finding attractive
triplet interactions [21]. Nevertheless, the structure factors reported here show a feature that
could be attributed to an attractive component, i.e. the increase in S(q) for low q (see figure 2).
In a previous work, polydispersity and the presence of large aggregates were also considered
causes for such increase [22]. However, the latexes used here are quite monodisperse, less
than 5%. Concerning the existence of aggregation, it should be noted that the increase in S(q)

for low q is also present (and even more noticeable) for the crystallizing sample (L2). As the
crystallization in this sample is the result of very intense electrostatic forces, aggregation due
to electrostatic destabilization does not seem feasible. Consequently, this phenomenon should
also be rejected as the cause for the behaviour of the structure factor at low q .

In our opinion, the rise of the intensity observed for small scattering vectors may be related
to the proximity of the phase transition mentioned above (fluid–crystal). The presence of small
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domains of crystals in the micron size range may result in an additional low q contribution
to the scattered intensity. Whichever is the case, our finding confirms the existence of spatial
heterogeneities. Extensive studies in the low q regime should be carried out in order to rule out
this scenario.

We have observed a non-monotonic dependence of the local order on the particle charge,
which has been analysed in terms of two renormalization schemes. The jellium approximation
explains qualitatively the existence of a certain charge where the correlation among particles
is maximum but it underestimates the height of the structure factor main peak. In contrast, the
cell model, which seems to improve the prediction of the experimental Smax values at larger
particle charges, cannot explain the non-monotonic behaviour.
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